
Workshop on the  
R Statistical Package 

 
Instructor:   David Lieske, Ph.D. Candidate 
Time:    12:00pm to 4:30pm 
Date: Wednesday, Sept. 27 
Format:   In the computer lab 
 
 

Workshop Overview 
 

Day 1 
 
 Give a brief overview of the R Statistical Package: its strengths, 

weaknesses, and the type of problems it’s ideal for. 
 Introduce you to the software and its language (or: “why it’s so 

powerful”). 
 Discuss data queries, importation, manipulation, and inspection. 
 Explore R’s powerful graphical tools, using distributional data for the 

American Crow (AMCR). 
 
Day 2 
 
 Dive into the details of modeling in R – how to specify models, how 

to retrieve output from models. 
 Discuss aspects of model fit using the ANOVA and logistic regression 

as examples. 
 Discuss aspects of model selection. 
 Build a base distribution model for the AMCR. 
 Build a GWR distribution model for the AMCR. 

 
 

 
 
 
 
 
 
 
 



 
Worksheet #1 

 
PART 1 
 
 R is really a language.  In this sense it’s much more than a software program 

because once you’ve mastered the basic nuts & bolts you can solve any problem 

that comes your way – the best way to get a feel for it is to just try it out! 

 

 Where can you get it?  Visit the following site: 

http://www.r-project.org 

 

 

 Some of R’s strongest features are: 

 

1. A very compact and flexible language – that means you can do more 

with less lines of code (really, there isn’t a problem that can’t be 

tackled…). 

2. The R language is object-oriented -- everything that is created in R, 

whether a variable or a matrix or what-have-you, is retrievable by name 

and has properties (e.g., labels). 

3. Object-oriented design also applies to the output from R – you can grab 

anything you need and recombine it. 

4. R is ideal for simulation and modeling work, because you can re-run 

tasks many times and dynamically interact with the results at each 

iteration. 

5. R has beautiful graphical output. 

6. R has a progressive and generous user community who are always more 

than ready to offer advice – many, many state-of-the-art packages are 

available. 

7. Free of charge!   

 

http://www.r-project.org/


 

 

 The language is very compact and elegant, but not necessarily easy to learn or 

read.  Different programmers have different styles, for example, the way that they 

name the various objects in R.  You’ll naturally develop your own style so don’t 

worry too much about it.  However, try to be consistent and systematic. 

 

 Back to the object-oriented aspect of R… 

 

In addition to simple objects like arrays, R also uses functions, which are also 

objects – but ones that can execute code.  Non-function objects cannot execute 

commands for you. 

 

Fundamentals: Objects and Assignment 

 

 The Assignment Operator 

 

** The simplest possible example of the use of the assignment operator “<-“ 

involves a scalar (single value) assigned to an object (e.g., “x”): 

 

x <- 5 

 
The following command line creates a vector object called “x” and assigns to it 

the set of numbers combined together by the “c()” function. 

 
x <- c(1,2,3,4,5,6,7,8,9,10) 
 
 
It’s no problem to retrieve the values of object “x” – just type it’s name! 
 
> x 
 [1]  1  2  3  4  5  6  7  8  9 10 
 
 
 



It’s quite easy to generate a simple scatterplot of the values of object “x” – just 
use the “plot()” function: 
 
> plot(x) 
 
 

 
 
Here’s another function I’d like to give you the heads-up about, because it’s really 
helpful for querying information about more complicated objects like lists or 
dataframes – it’s the “str()” function: 
 
> str(x) 
 num [1:10] 1 2 3 4 5 6 7 8 9 10 

 
 

Object Queries 
 
 Ok, what if you want to plot only the last 5 values in your vector object “x”?  

How would you go about querying subsets of the data? 
 

> x[5:10] 
[1]  5  6  7  8  9 10 
 

 Now if you want to plot just this subset you can by passing it to the plot() 
function: 

 
plot(x[5:10]) 
 
 



 Some other simple queries… 
 

> x[x>8] 
[1]  9 10 
 
> x[x>8 | x<2] 
[1]  1  9 10 
 
> x[x>8 & x<2] 
numeric(0) 
 
> x[-5] 
[1]  1  2  3  4  6  7  8  9 10 
 
 

 We’ve now discussed two types of queries –  
 

(1) queries based on position in the vector (e.g., the 5th value, x[5]);  

(2) queries based on the values in the vector (e.g., all values in the “x” object 

greater than eight, x[x>8]). 

 
 Ok, let’s pretend that object “x” was really a variable like crime rate – let’s create 

a variable for this called “crime”, and while we’re at it, let’s also create a 

predictor (independent) variable called “propval” (to represent property value): 

 
> crime <- c(13.1,4.5,11.0,18.9) 
> crime 
[1] 13.1  4.5 11.0 18.9 
 
> propval <- c(125,87,133,84) 
> propval 
[1] 125  87 133  84 
 
> plot(propval,crime) 

 



 
 How did I know that I could produce a two-way scatter plot (propval vs. crime)?  

This would be a good time to mention R’s help menu… 

 
 

> ?plot 
 
 

plot                package:graphics                R Documentation 
 
Generic X-Y Plotting 
 
Description: 
 
     Generic function for plotting of R objects.  For more details 
     about the graphical parameter arguments, see 'par'. 
 
Usage: 
 
     plot(x, y, ...) 
 
Arguments: 
 
       x: the coordinates of points in the plot. Alternatively, a 
          single plotting structure, function or _any R object with a 
          'plot' method_ can be provided. 
 
       y: the y coordinates of points in the plot, _optional_ if 'x' is 
          an appropriate structure. 
 
     ...: graphical parameters can be given as arguments to 'plot'.  



          Many methods will also accept the following arguments: 
 
     'type' what type of plot should be drawn.  Possible types are 
 
             *  '"p"' for *p*oints, 
 
             *  '"l"' for *l*ines, 
 
             *  '"b"' for *b*oth, 
 
             *  '"c"' for the lines part alone of '"b"', 
 
             *  '"o"' for both "*o*verplotted", 
 
             *  '"h"' for "*h*istogram" like (or "high-density") 
                vertical lines, 
 
             *  '"s"' for stair *s*teps, 
 
             *  '"S"' for other *s*teps, see _Details_ below, 
 
             *  '"n"' for no plotting. 
 
          All other 'type's give a warning or an error; using, e.g., 
          'type = "punkte"' being equivalent to 'type = "p"' for S 
          compatibility. 
 
     'main' an overall title for the plot: see 'title'. 
 
     'sub' a sub title for the plot: see 'title'. 
 
     'xlab' a title for the x axis: see 'title'. 
 
     'ylab' a title for the y axis: see 'title'.  
 
Details: 
 
     For simple scatter plots, 'plot.default' will be used. However, 
     there are 'plot' methods for many R objects, including 
     'function's, 'data.frame's, 'density' objects, etc.  Use 
     'methods(plot)' and the documentation for these. 
 
     The two step types differ in their x-y preference: Going from 
     (x1,y1) to (x2,y2) with x1 < x2, 'type = "s"' moves first 
     horizontal, then vertical, whereas 'type = "S"' moves the other 
     way around. 



 
See Also: 
 
     'plot.default', 'plot.formula' and other methods; 'points', 
     'lines', 'par'. 
 
Examples: 
 
     plot(cars) 
     lines(lowess(cars)) 
 
     plot(sin, -pi, 2*pi) 
 
     ## Discrete Distribution Plot: 
     plot(table(rpois(100,5)), type = "h", col = "red", lwd=10, 
          main="rpois(100,lambda=5)") 
 
     ## Simple quantiles/ECDF, see ecdf() {library(stats)} for a better one: 
     plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")") 
     points(x, cex = .5, col = "dark red") 
 
 

 Ok, after a while you end up with a lot of objects floating around.  How do you 

list them? 

 
> objects() 
[1] "crime"   "propval" "x"   

 
 
 Great, let’s say I’m done for the day.  How do I quit R and shut it down 

gracefully? 
 

> q() 
 
 

 You keeners in the audience may be worrying about how many commands you’re 

likely to type in a given R session – this is a valid concern!  In addition to not 

wanting to have to re-type everything, you may want to review or audit the 

analysis later on, and for this you need a way to document what you’ve done.  

 

I use Windows “notepad” to store all of my commands, and I name all of my files 

in this way: 



 

script.R 

 

The “.R” extension tells me it’s an R language scripting file, just like “.SPS” is an 

SPSS syntax file. 

 

You can also retrieve all the commands you’ve typed in an R session using the 

“history()” function: 

 

> history(max.show=5) 

pairs(~df$DTR + df$PRECIP + df$TEMP) 
history 
history() 
?history 
history(max.show=2) 
history(max.show=5) 

 
PART 2 
 
 The simplest way to import data into R is to use one of the standard ASCII data 

storage formats, namely comma or tab-delimited text files.  There are at least 

three different functions you can use to import this type of data: 

 
read.csv(file, header = TRUE, sep = ",", quote="\"",    
  dec=".",fill = TRUE, ...) 
 
read.delim(file, header = TRUE, sep = "\t",  
  quote="\"", dec=".", fill = TRUE, ...) 
 
read.table(file, header = FALSE, sep = "", quote =  
  "\"'", dec = ".", row.names, col.names, as.is =  
  FALSE, na.strings = "NA", colClasses = NA,  
  nrows = -1, skip = 0, check.names = TRUE,  
  fill = !blank.lines.skip, strip.white = FALSE,    
  blank.lines.skip = TRUE, comment.char = "#",  
  allowEscapes = FALSE) 

      
 



 Let’s import the American Crow data. This data set contains occurrence data for 

2799 survey points aggregated from 1997-2003 Breeding Bird Survey data for the 

boreal-hardwood transition zone. 

  

  First have a look at the data in your favourite text editor to confirm how it’s been 

formatted: 

 
xcoord ycoord presence … 
1621035.14 4973929.11 1 … 
1620893.71 4974728.34 1 … 
  

 Now let’s use the read.table() function to import the data now that we 

know that it’s a tab-delimited text file: 

 
> read.table("amcr.txt", sep="\t") 
 
What did you see? 
 
Let’s revise the previous command execution to assign the results of 

“read.table()” to an object called “df”: 

 
> df <- read.table("amcr.txt", sep="\t", header=TRUE) 
 
 
> str(df) 
 
> str(df) 
`data.frame':   2799 obs. of  13 variables: 
 $ xcoord  : num  1621035 1620894 1620757 1620629 1616523 ... 
 $ ycoord  : num  4973929 4974728 4975528 4976330 4976492 ... 
 $ CROPVEG : int  1 1 0 0 0 0 0 0 0 0 ... 
 $ CONIFER : int  0 0 0 0 0 0 0 0 0 0 ... 
 $ DECID   : int  0 0 0 0 0 0 0 0 0 0 ... 
 $ MIXEDF  : int  0 0 1 1 0 1 1 1 1 1 ... 
 $ EVIMEAN : num  5226 5226 4800 4270 5189 ... 
 $ EVISD   : num  188 188 502 718 424 ... 
 $ ELEV    : int  328 322 322 323 336 335 328 326 322 320 ... 
 $ DTR     : num  11.1 11.1 11.1 11.1 11.1 ... 
 $ PRECIP  : num  730 730 730 730 730 ... 
 $ TEMP    : num  7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 ... 
 $ presence: int  1 1 1 0 1 0 1 1 1 1 ... 

 

 What are these variables?  That’s where metadata comes in handy… 

 

 



 

 

Table 1.  Candidate variables used to model species distributions. 

Variable Description Source  

Land Cover  

CONIFER Conifer-dominated forest MODIS 2001 land cover classification * 

CROPVEG Cropland/natural vegetation mosaic MODIS 2001 land cover classification* 

DECID Deciduous-dominated forest MODIS 2001 land cover classification * 

MIXEDF Mixed (conifer-deciduous)  forest MODIS 2001 land cover classification * 

EVIMEAN Mean Enhanced Vegetation Index (EVI) for MODIS 16-day EVI ** 

 a 3x3 neighbourhood 

EVISD Mean Standard Deviation of the Enhanced  MODIS 16-day EVI ** 

 Vegetation Index (EVI) for a 3x3 neighbourhood 

Climate 

DTR Mean diurnal temperature range (0C) CRU_2_10 global climate data *** 

PRECIP Total annual precipitation (mm) CRU_2_10 global climate data *** 

TEMP Mean temperature (0C) CRU_2_10 global climate data ***  

 

Topography 

ELEV Elevation (m) GTOPO30 global digital elevation 
model****   

  

*Derived from the MOD12Q1 (1-km resolution) layer incorporating the 17-class land cover classification system 
defined by the International Geosphere-Biosphere Programme (IGBP), U.S. Geological Survey (2006). 

**Derived from the MOD13A2 (1-km resolution) layer for 25 June, 2004, U.S. Geological Survey & NASA (2006). 

***Monthly averages (or annual totals, in the case of precipitation) were averaged over the years 1997-2002 at a 
resolution of 0.50 x 0.50 (Mitchell & Jones 2005). 

****Global digital elevation data at an approximately 1-km resolution (U.S. Geological Survey 1996). 

 

 Ok, what kind of object is “df”?  It’s a data frame which is R’s standard format for 

representing data – Note that data frame objects are just like Excel spreadsheets.  

The have variables (with names), and data points are represented as rows in the 

table.  You can manually edit data frames (if you need to, but R isn’t the best 

place to do this…): 

 



> edit(df) 
 
 Let’s explore the variables in this dataset, starting with the response variable: 

 
presence 
 
It’s a binary variable (1/0) indicating presence at anytime during the 1997-2003 

period.  Because it’s a categorical (dummy) variable with a small number of 

classes, it’s best summarized using a simple cross-tabulation: 

 
> table(df$presence) 
 
   0    1  
1581 1218 
 
table() tabulated 1218 presence points (presence = 1) out of 2799 survey 

points (43.5% of locations). 

 

We’ll explore further functions for summarizing and visualizing this data in Part 

3. 

 

PART 3 
 
 What proportion of the survey points fall into the different land cover classes? 

 

> table(df$CROPVEG) 
 
   0    1  
2355  444 
 
> table(df$CONIFER) 
 
   0    1  
2600  199 
 
> table(df$DECID) 
 
   0    1  
2798    1 
 
> table(df$MIXEDF) 
 
   0    1  
1242 1557 



 

Variable % of Survey Points 

CROPVEG 444/2799 = 15.9% 

CONIFER 199/2799 = 7.1% 

DECID 1/2799 = 0.04% 

MIXEDF 1557/2799 = 55.6% 

 

 What proportion of the AMCR presence points occur in the previous land cover 

types, and is their evidence of selection for or against each of the classes? 

 

CROPVEG 

> table(df$presence,df$CROPVEG); 

chisq.test(df$presence,df$CROPVEG) 

    

       0    1 

  0 1415  166 

  1  940  278 

 

        Pearson's Chi-squared test with Yates' continuity 

correction 

 

data:  df$presence and df$CROPVEG  

X-squared = 77.3781, df = 1, p-value < 2.2e-16 

 

CONIFER 

> table(df$presence,df$CONIFER); 

chisq.test(df$presence,df$CONIFER) 

    

       0    1 

  0 1431  150 

  1 1169   49 

 

        Pearson's Chi-squared test with Yates' continuity 

correction 

 



data:  df$presence and df$CONIFER  

X-squared = 30.287, df = 1, p-value = 3.726e-08 

 

DECID 

> table(df$presence,df$DECID); chisq.test(df$presence,df$DECID) 

    

       0    1 

  0 1580    1 

  1 1218    0 

 

        Pearson's Chi-squared test with Yates' continuity 

correction 

 

data:  df$presence and df$DECID  

X-squared = 0.0171, df = 1, p-value = 0.896 

 

Warning message: 

Chi-squared approximation may be incorrect in: 

chisq.test(df$presence, df$DECID)  

> 

 

MIXEDF 

> table(df$presence,df$MIXEDF); chisq.test(df$presence,df$MIXEDF) 

    

      0   1 

  0 642 939 

  1 600 618 

 

        Pearson's Chi-squared test with Yates' continuity 

correction 

 

data:  df$presence and df$MIXEDF  

X-squared = 20.5243, df = 1, p-value = 5.888e-06 

> 

 

 

 



Variable % of Survey Points % of AMCR Presence Points 

CROPVEG 444/2799 = 15.9% 278/1218 = 22.8% (+) 

CONIFER 199/2799 = 7.1% 49/1218 = 4.0% (-) 

DECID 1/2799 = 0.04% 0/1218 = 0% (-) 

MIXEDF 1557/2799 = 55.6% 600/1218 = 49.3% (-) 

  

 
 What is the relationship between occurrence of AMCR and the continuous 

variables EVIMEAN, EVISD, DTR, PRECIP, TEMP, ELEV? 

 

Let’s start with the EVIMEAN variable, but let’s look at its relationship with 

absence and presence separately: 

 

> summary(df$EVIMEAN[df$presence == 0]) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   1069    4495    5018    5078    5644    7343 

> boxplot(df$EVIMEAN[df$presence == 0]) 

 

 

 



> summary(df$EVIMEAN[df$presence == 1]) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   1069    5015    5558    5391    5989    7052  

> boxplot(df$EVIMEAN[df$presence == 1]) 

 

There is a way to change the default graphing parameters in R to customize the 

formatting of the output.  In this case, I want to simultaneously view the previous 

output, for all six variables.  I’ll use a 3x2 panel to achieve this: 

 
> par.old <- par() 
> par(mfrow=c(3,2)) 
> label <- c(“Absence”, “Presence”) 
> boxplot(df$EVIMEAN[df$presence==0], 
df$EVIMEAN[df$presence == 1],main=”EVIMEAN”) 
> axis(side=1, at=c(1,2), labels=label, lwd=1, font=1) 
 
… [just copy and paste the following block of commands] 
 
boxplot(df$EVISD[df$presence==0], df$EVISD[df$presence 
== 1],main=”EVISD”) 
axis(side=1, at=c(1,2), labels=label, lwd=1, font=1) 
 
boxplot(df$DTR[df$presence==0], df$DTR[df$presence == 
1],main=”DTR”) 
axis(side=1, at=c(1,2), labels=label, lwd=1, font=1) 
 



boxplot(df$PRECIP[df$presence==0], 
df$PRECIP[df$presence == 1],main=”PRECIP”) 
axis(side=1, at=c(1,2), labels=label, lwd=1, font=1) 
 
boxplot(df$TEMP[df$presence==0], df$TEMP[df$presence 
== 1],main=”TEMP”) 
axis(side=1, at=c(1,2), labels=label, lwd=1, font=1) 
 
boxplot(df$ELEV[df$presence==0], df$ELEV[df$presence 
== 1],main=”ELEV”) 
axis(side=1, at=c(1,2), labels=label, lwd=1, font=1) 
 
 

 
 
 
 Now that we’ve finished producing our 3x2 panel, you can reset the original 

graphing parameters this way: 
 

> par(par.old)  



 
 Another useful graphical exploratory data analysis (EDA) tool is the pairwise plot 

applied to continuous variables: 
 

> pairs(~df$DTR + df$PRECIP + df$TEMP) 
 

 
 
 
 
 
APPENDIX: Some notes for further exploration 
 
 Exporting graphical output from R is pretty easy – if you right click on the image 

you can choose to either copy it, or save it.  If you intend to copy and paste the 

image as I did in this worksheet, use the “copy to bitmap” option – it produces 

quite nice imbedded graphics.  Another option is to save the image as a 



“encapsulated postscript”, which you can open into, for example, Adobe 

Illustrator.  You can resize particular elements to your hearts content, as well as 

modify bits of the image.  You could then export the finished product back to a 

bitmap, or some other format (GIFF, JPEG, etc.). 

 

 You can export data from dataframes in a fashion analogous to importing data, 

using the “write.table()” function.  For example, let’s say I have a dataframe 

called “data” that I want to export to a comma-delimited file called “export.txt” 

(with the first row containing the variable names): 

 

> write.table(data, file=”export.txt”, sep=”,”, col.names=TRUE) 



Workshop on the  
R Statistical Package 

 
Instructor:   David Lieske, Ph.D. Candidate 
Time:    9:00am to 12:00pm 
Date: Thursday, Sept. 28 
Format:   In the computer lab 
 

Workshop Overview 
 

Day 1 
 
 Give a brief overview of the R Statistical Package: its strengths, 

weaknesses, and the type of problems it’s ideal for. 
 Introduce you to the software and its language (or: “why it’s so 

powerful”). 
 Discuss data queries, importation, manipulation, and inspection. 
 Explore R’s powerful graphical tools, using distributional data for the 

American Crow (AMCR). 
 
Day 2 
 
 Dive into the details of modeling in R – how to specify models, how 

to retrieve output from models. 
 Discuss aspects of model fit, using the ANOVA and logistic 

regression as examples. 
 Discuss aspects of model selection. 
 Build a base logistic distribution model for the AMCR. 
 Build a GWR distribution model for the AMCR. 

 
 

Worksheet #2 
 

PART 1 – Model Specification in R 
 
 R has its own symbolic language for representing statistical models. 

 

 For a simple linear model, such as a linear regression with one intercept and one 

slope parameter, the formula would be represented as: 



 

y ~ b 

 

Note that you don’t need to specify the intercept because it’s assumed by default.  

If, for some reason, you do not wish to estimate the intercept, you would write the 

following: 

 

y ~ b – 1 

 

When specifying a multivariate regression, you combine each parameter to be 

estimated in a simple additive fashion: 

 

y ~ b1 + b2 + b3 

 

To specify a polynomial regression you have a couple of options at your disposal: 

(1) you can use the “poly()” function, or (2) you can create the polynomials 

manually using the “I()” function: 

 

y ~ poly(b,2) 

 

means the same thing as: 

 

y ~ b + I(b^2) 

 

Basically, the “I()” function allows you to perform arithmetic operations on the 

variable specified within the parenthesis – in this case the square of variable b. 

 

** Another thing you need to know about: what if your predictor variable is a 

factor with discrete levels (e.g., drug A, B or C), and not a continuous 

measurement? 

 
yield <- c(60,72,54,68,52,83,45,80) 



cat <- c("A","A","A","A","B","B","B","B") 
 
cat <- as.factor(cat) 
cat 
[1] A A A A B B B B 
Levels: A B 
 
Now you would proceed with specifying the model the same way you did with the 

continuous measurements: 

 

yield ~ cat 

 

What if you have reason to believe that the effect of one variable is moderated or 

influenced by the presence of another variable, in other words, an interaction.  

How would you model this in R? 

 

y ~ A + B + A:B 

 

or more compactly as: 

 

y ~ A*B 

 

So let’s add a third variable called “temp” and illustrate how we could specify a 

model that incorporates the interaction between “temp” and “cat”: 

 
temp <- c(“160”,”180”,”160”,”180”,”160”,”180”, 
  ”160”,”180”) 
 
temp <- as.factor(temp) 
 
yield ~ cat + temp + cat:temp 
 
or: 
 
yield ~ cat*temp 

 
 



 Let’s use the “yield” data from the previous example to illustrate how to estimate 

model parameters in R,in this case using a classical Analysis of Variance 

(ANOVA) approach. 

 

But first, let’s do a little housekeeping with the “yield”, “cat”, and “temp” 

variables.  Let’s join them together into one single object: 

 
df <- cbind(yield,cat,temp) 

 
> df 
     yield cat temp 
[1,]    60   1    1 
[2,]    72   1    2 
[3,]    54   1    1 
[4,]    68   1    2 
[5,]    52   2    1 
[6,]    83   2    2 
[7,]    45   2    1 
[8,]    80   2    2 
 
 
> df <- as.data.frame(df) 
> df 
  yield cat temp 
1    60   1    1 
2    72   1    2 
3    54   1    1 
4    68   1    2 
5    52   2    1 
6    83   2    2 
7    45   2    1 
8    80   2    2 
 
 
> df$cat <- factor(cat,levels=c("A","B")) 
> df$temp <- factor(temp,levels=c("160","180")) 
> df 
  yield cat temp 
1    60   A  160 
2    72   A  180 
3    54   A  160 
4    68   A  180 
5    52   B  160 
6    83   B  180 



7    45   B  160 
8    80   B  180 
 
Great!  This may not have looked like a simple procedure, but it makes for a 

much tidier workspace – which means less chance of you (as the analyst) making 

a silly mistake. 

 

To perform our Analysis of Variance we’ll use the function “aov()”.  It’s basic 

arguments are: 

 
aov(formula, data) 
 
In our case, we want to call “aov()” in this way (making sure to store the results in 

an object called “cat.aov”) 

 
cat.aov <- aov(yield ~ cat*temp, data=df) 

 
 

> cat.aov 
Call: 
   aov(formula = yield ~ cat * temp, data = df) 
 
Terms: 
                   cat   temp cat:temp Residuals 
Sum of Squares     4.5 1058.0    200.0      55.0 
Deg. of Freedom      1      1        1         4 
 
Residual standard error: 3.708099  
Estimated effects may be unbalanced 

 
 

> summary(cat.aov) 
            Df  Sum Sq Mean Sq F value    Pr(>F)     
cat          1    4.50    4.50  0.3273 0.5978852     
temp         1 1058.00 1058.00 76.9455 0.0009312 *** 
cat:temp     1  200.00  200.00 14.5455 0.0188776 *   
Residuals    4   55.00   13.75                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 
0.1 ' ' 1 
 

 
 



Let’s have a look at the raw data: 
 

boxplot(df$yield[df$cat == "A"],  
  df$yield[df$cat == "B"], names=c("A","B"),     
  main=”Yield by Type of Catalyst”) 
 
 
boxplot(df$yield[df$temp == "160"],  
  df$yield[df$temp == "180"], names=c("160","180"),     
  main=”Yield by Temperature”) 
 
 

PART 2 – Specification of the Base Logistic Regression for the AMCR 
 
 
 Let’s return to the AMCR data from worksheet #1 (day 1): 

 
df <- read.table("amcr.txt", sep="\t", header=TRUE) 
 

 
Let’s double check the data frame to make sure everything’s where it’s supposed 
to be: 
 
> dim(df) 
[1] 2799   13 
 
> str(df) 
`data.frame':   2799 obs. of  13 variables: 
 $ xcoord  : num  1621035 1620894 1620757 1620629 1616523 ... 
 $ ycoord  : num  4973929 4974728 4975528 4976330 4976492 ... 
 $ CROPVEG : int  1 1 0 0 0 0 0 0 0 0 ... 
 $ CONIFER : int  0 0 0 0 0 0 0 0 0 0 ... 
 $ DECID   : int  0 0 0 0 0 0 0 0 0 0 ... 
 $ MIXEDF  : int  0 0 1 1 0 1 1 1 1 1 ... 
 $ EVIMEAN : num  5226 5226 4800 4270 5189 ... 
 $ EVISD   : num  188 188 502 718 424 ... 
 $ ELEV    : int  328 322 322 323 336 335 328 326 322 320 ... 
 $ DTR     : num  11.1 11.1 11.1 11.1 11.1 ... 
 $ PRECIP  : num  730 730 730 730 730 ... 
 $ TEMP    : num  7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 7.24 ... 
 $ presence: int  1 1 1 0 1 0 1 1 1 1 ... 
 
 

We’re interested in modeling the effect of land cover (“CROPVEG”, 

“CONIFER”, “DECID”, “MIXEDF”, “EVIMEAN”, “EVISD”), climactic 

(“DTR”, “PRECIP”, and “TEMP”), and topographic (“ELEV”) variables on the 

probability of occurrence for the AMCR. 

 



presence ~ CROPVEG + CONIFER + DECID + MIXEDF + 
EVIMEAN + EVISD + DTR + PRECIP + TEMP + 
ELEV 

 
The R function for calculating logistic regressions (“glm()”) is part of the 

Generalized Linear Models family with a logistic-link.  Let’s determine what 

arguments it takes: 

 
?glm 
 
Fitting Generalized Linear Models 
 
Description: 
 
     'glm' is used to fit generalized linear models, specified by 
     giving a symbolic description of the linear predictor and a 
     description of the error distribution. 
 
Usage: 
 
     glm(formula, family = gaussian, data, weights, subset, 
         na.action, start = NULL, etastart, mustart, 
         offset, control = glm.control(...), model = TRUE, 
         method = "glm.fit", x = FALSE, y = TRUE, contrasts = 
NULL, ...) 
 

 
 

As with the Analysis of Variance example above, when we call the function 

“glm()” we want to assign the result to an object so that we can view it and 

manipulate it. 

 
df.glm <- glm(formula=presence ~ CROPVEG + CONIFER +    
  DECID + MIXEDF + EVIMEAN + EVISD + DTR + PRECIP +  
  TEMP + ELEV, family=binomial, data=df) 

 
> df.glm 
 
Call:  glm(formula = presence ~ CROPVEG + CONIFER + DECID + MIXEDF +      EVIMEAN 
+ EVISD + DTR + PRECIP + TEMP + ELEV, family = binomial,      data = df)  
 
Coefficients: 
(Intercept)      CROPVEG      CONIFER        DECID       MIXEDF      EVIMEAN   
 -8.321e+00    1.763e-01    1.572e-01   -1.045e+01   -1.700e-01    2.377e-04   
      EVISD          DTR       PRECIP         TEMP         ELEV   
  3.586e-04    3.007e-01    1.384e-04    4.851e-01    1.946e-03   
 
Degrees of Freedom: 2798 Total (i.e. Null);  2788 Residual 
Null Deviance:      3833  
Residual Deviance: 3472         AIC: 3494 

 



> str(df.glm) 
 
List of 30 
 $ coefficients     : Named num [1:11]  -8.321   0.176   0.157 -10.446  -0.170 ... 
  ..- attr(*, "names")= chr [1:11] "(Intercept)" "CROPVEG" "CONIFER" "DECID" ... 
 $ residuals        : Named num [1:2799]  1.47  1.48  1.67 -2.42  1.52 ... 
  ..- attr(*, "names")= chr [1:2799] "1" "2" "3" "4" ... 
 $ fitted.values    : Named num [1:2799] 0.678 0.676 0.598 0.587 0.659 ... 
  ..- attr(*, "names")= chr [1:2799] "1" "2" "3" "4" ... 
 $ effects          : Named num [1:2799]  5.2082 -7.8648 -4.3641 -0.0572 -2.1948 
... 
  ..- attr(*, "names")= chr [1:2799] "(Intercept)" "CROPVEG" "CONIFER" "DECID" ... 
 $ R                : num [1:11, 1:11] -24.6   0.0   0.0   0.0   0.0 ... 
  ..- attr(*, "dimnames")=List of 2 
  .. ..$ : chr [1:11] "(Intercept)" "CROPVEG" "CONIFER" "DECID" ... 
  .. ..$ : chr [1:11] "(Intercept)" "CROPVEG" "CONIFER" "DECID" ... 
 $ rank             : int 11 
 $ qr               :List of 5 
  ..$ qr   : num [1:2799, 1:11] -24.5670   0.0191   0.0200   0.0200   0.0193 ... 
  .. ..- attr(*, "dimnames")=List of 2 
  .. .. ..$ : chr [1:2799] "1" "2" "3" "4" ... 
  .. .. ..$ : chr [1:11] "(Intercept)" "CROPVEG" "CONIFER" "DECID" ... 
  ..$ rank : int 11 
  ..$ qraux: num [1:11] 1.02 1.04 1.01 1.00 1.03 ... 
  ..$ pivot: int [1:11] 1 2 3 4 5 6 7 8 9 10 ... 
  ..$ tol  : num 1e-11 
  ..- attr(*, "class")= chr "qr" 
 $ family           :List of 11 
  ..$ family    : chr "binomial" 
  ..$ link      : chr "logit" 
  ..$ linkfun   :function (mu)   
  ..$ linkinv   :function (eta)   
  ..$ variance  :function (mu)   
  ..$ dev.resids:function (y, mu, wt)   
  ..$ aic       :function (y, n, mu, wt, dev)   
  ..$ mu.eta    :function (eta)   
   
…. 
 
 $ deviance         : num 3472 
 $ aic              : num 3494 
 $ null.deviance    : num 3833 
 $ iter             : int 10 
 $ weights          : Named num [1:2799] 0.218 0.219 0.240 0.242 0.225 ... 
  ..- attr(*, "names")= chr [1:2799] "1" "2" "3" "4" ... 
 $ prior.weights    : Named num [1:2799] 1 1 1 1 1 1 1 1 1 1 ... 
  ..- attr(*, "names")= chr [1:2799] "1" "2" "3" "4" ... 
 $ df.residual      : int 2788 
 $ df.null          : int 2798 

 
…… 

 
Ok, so we know the model was successfully estimated, i.e., it produced 
coefficients for each of the predictor variables – but are they all significant?  We 
should produce a summary of the “df.glm” object: 
 
> summary(df.glm) 

 
Call: 
glm(formula = presence ~ CROPVEG + CONIFER + DECID + MIXEDF +  
    EVIMEAN + EVISD + DTR + PRECIP + TEMP + ELEV, family = binomial,  
    data = df) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   



-1.6988  -0.9611  -0.6490   1.0952   2.0552   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -8.321e+00  9.496e-01  -8.763  < 2e-16 *** 
CROPVEG      1.763e-01  1.438e-01   1.226 0.220190     
CONIFER      1.572e-01  2.117e-01   0.743 0.457566     
DECID       -1.045e+01  1.970e+02  -0.053 0.957705     
MIXEDF      -1.700e-01  1.060e-01  -1.604 0.108722     
EVIMEAN      2.377e-04  6.157e-05   3.861 0.000113 *** 
EVISD        3.586e-04  1.169e-04   3.066 0.002167 **  
DTR          3.007e-01  7.376e-02   4.077 4.56e-05 *** 
PRECIP       1.384e-04  4.059e-04   0.341 0.733181     
TEMP         4.851e-01  3.841e-02  12.629  < 2e-16 *** 
ELEV         1.946e-03  4.856e-04   4.008 6.13e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 3833.0  on 2798  degrees of freedom 
Residual deviance: 3471.8  on 2788  degrees of freedom 
AIC: 3493.8 
 
Number of Fisher Scoring iterations: 10 

 
 

Interesting results.  Of the land cover variables, EVIMEAN and EVISD appear to 

be positive predictors for AMCR occurrence.  Of the climactic variables, DTR 

and TEMP appear to also be positive predictors.  ELEV appears as a positive 

predictor as well.   

 

But how can we assess the goodness of fit for the linear model?  One measure of 

fit is predictive accuracy, which we can assess using the area under the curve 

(AUC) of a receiver operating characteristic curve (ROC).  We’ll load a library 

off the WWW that contains a nice function for calculating AUC : 

 

> library(Epi) 

> ROC(test=df.glm$fitted.values, stat=df$presence)$AUC 

 
We find that the accuracy is: 0.703. 
 
There’s another measure of fit that can be applied to logistic (binary) 
measurements, based on the Hosmer-Lemeshow test (see APPENDIX): 
 
df.glm.hl <- hltest(resp=df$presence, prob=df.glm$fitted.values, g=5) 
 
> df.glm.hl 



$table 
   group 
      1   2   3   4   5 
  0 424 455 271 227 204 
  1 134 106 290 334 354 
 
$Chat 
[1] 65.56132 
 
$df 
[1] 3 
 
$sig 
[1] 3.808065e-14 
 
 

Model Selection using AIC 

 

In the previous analysis with forced all of the variables to be added to the logistic 

regression.  Another choice would be to use an automated model selection 

algorithm such as “step()” which uses forward or backward stepwise addition of 

variables and a stopping rule based on Akaike Information Criterion (AIC) values. 

 
What is the AIC?  AIC = -2*ln(likelihood) + 2p 
 

Let’s repeat the previous model estimation procedure, but this time introduce the 

function “step()”: 

 
df.glm.step <- step(df.glm) 
 
Start:  AIC= 3493.81  
 presence ~ CROPVEG + CONIFER + DECID + MIXEDF + EVIMEAN + EVISD 
+   
    DTR + PRECIP + TEMP + ELEV  
 
          Df Deviance    AIC 
- PRECIP   1   3471.9 3491.9 
- CONIFER  1   3472.4 3492.4 
- DECID    1   3472.4 3492.4 
- CROPVEG  1   3473.3 3493.3 
<none>         3471.8 3493.8 
- MIXEDF   1   3474.4 3494.4 
- EVISD    1   3481.2 3501.2 
- EVIMEAN  1   3486.9 3506.9 
- ELEV     1   3487.9 3507.9 
- DTR      1   3488.8 3508.8 
- TEMP     1   3648.3 3668.3 
 



… 
 
 
> summary(df.glm.step) 
 
Call: 
glm(formula = presence ~ MIXEDF + EVIMEAN + EVISD + DTR + TEMP +  
    ELEV, family = binomial, data = df) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6714  -0.9649  -0.6479   1.0953   2.0816   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept) -8.123e+00  8.536e-01  -9.517  < 2e-16 *** 
MIXEDF      -2.517e-01  8.434e-02  -2.985  0.00284 **  
EVIMEAN      2.319e-04  5.908e-05   3.926 8.65e-05 *** 
EVISD        3.288e-04  1.124e-04   2.925  0.00344 **  
DTR          3.027e-01  7.302e-02   4.145 3.40e-05 *** 
TEMP         4.898e-01  3.494e-02  14.016  < 2e-16 *** 
ELEV         1.939e-03  4.829e-04   4.015 5.93e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 3833.0  on 2798  degrees of freedom 
Residual deviance: 3474.2  on 2792  degrees of freedom 
AIC: 3488.2 
 
Number of Fisher Scoring iterations: 4 

 
 

Displaying Predicted Probabilities of Occurrence 

 

 Let’s load a library that will help us produce some maps: 

 
library(geoR) 
 

 We need to “attach” the predicted probabilities of occurrence (from the object 

df.glm.step above) to the “df” dataframe that holds our American Crow 

data: 

 

prob <- df.glm.step$fitted.values 
df <- cbind(df,prob) 

 

 Now we need to produce an object that the “geoR” package can utilise: 



 

df.geodata <- as.geodata(df,coords.col=1:2, data.col=14) 

plot.geodata(df.geodata) 

 
 
PART 3 – Exploration of a GWR Logistic Regression for the AMCR 

 
 Until now we’ve assumed that the model relationships (e.g., a positive slope of 

0.4898 for the relationship between AMCR occurrence and average temperature) 

is the same everywhere in the study area – is this necessarily true? 

 

 This leads us to the STATIONARITY ASSUMPTION: A spatial process is 

stationary if its statistical properties (mean, variance) are independent of absolute 

location in the study region.  It also implies that the relationship between values at 

any two points depends only on the distance and direction between them, and not 

on their absolute location… [but GWR doesn’t really deal with the 2nd part of the 

assumption so we won’t talk about it anymore, :>] (see Bailey and Gatrell 1995: 

33). 

 

 According to Fotheringham, Brunsdon, and Charlton (2002: 9-10), there are three 

reasons why relationships might vary with location: 

 

1. Sampling variation & noise. 

2. The process generating the observations is not the same everywhere. 

3. Unmeasured but influential factors (or processes) are active at different 

locations. 

 

In the case of the AMCR, it’s pretty easy to imagine the species exhibiting 

differential adaptation to environmental conditions (case #2).  I can also imagine 

#3 applying because there are bound to be environmental or anthropogenic factors 

active in different portions of the large study area that we don’t know about.  Case 

#1 must apply, as multiple observers conduct the survey and all observations are 

made with a certain amount of error. 



 

 

 How does “geographically-weighted regression” work? 

 

1. Estimates model relationships for each individual location (=local 

estimates) – e.g., a data set with 350 points will have 350 estimates for 

each parameter! 

2. Applies a moving kernel (=moving window) which differentially weights 

the influence of neighbouring points based on distance to the location in 

question: 

 

(from: Fotheringham, Brunsdon & Charlton, 2000: 111) 

 

 So let’s dive in and have a look at the results! 

 First, we need to load the GWR library (assuming that the required script and .dll 

is already stored in the working directory): 

 

source(“gwr4_1c.R”) 

 

 The GWR package of Fotheringham, Brunsdon and Charlton, like most of the 

packages available for R, have nuances that you need to learn about before you 

use them.  In the case of the GWR functions, you need to create matrices and pass 

them as arguments: 



 

xvar <- c(“MIXEDF”,”EVIMEAN”,”EVISD”,”DTR”,”TEMP”,”ELEV”) 
 

x <- as.matrix(df[,xvar]) 

y <- df[,"presence"] 

loc <- as.matrix(df[,c("xcoord", "ycoord")]) 

 

 Now let’s call the “gwr.binomial()” function: 

 

> df.gwr <- gwr.binomial(x,y,loc,out.loc=loc,grid=FALSE,adaptive=NULL) 

Iteration    Log-Likelihood 
========================= 
       0        -1381  
       1        -1324  
       2        -1311  
       3        -1310  
       4        -1310  
       5        -1310  
       6        -1310 
 

 

 Let’s have a look at the “df.gwr” object: 

> df.gwr 
Binomial GWR model with variables : Intercept MIXEDF EVIMEAN 
EVISD DTR TEMP ELEV  
Bandwidth      =  501662  
Effective D.F. =  31.37  
Corrected AIC  =  2683 
 

 Using TEMP as an example, let’s take a look at the range of estimates for this 

variable: 

> summary(df.gwr$est[,c("TEMP")]) 

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

-1.0020  0.5796  0.7035  0.9567  1.3070  2.3300 

 

Remember the original estimate for TEMP? 0.4898 

 
 Let’s look at the map of the variation in parameter estimates: 

 
> temp.est <- df.gwr$est[,c(“TEMP”)] 
> df <- cbind(df,temp.est) 
> df.geodata <- as.geodata(df,coords.col=1:2, data.col=15) 
> plot.geodata(df.geodata) 
 
 



 
 

 
 What about the accuracy of the predictions from this new, geographically-explicit 

model? 

 

x <- as.matrix(cbind(rep(1,dim(loc)[1]), x)) 
b <- df.gwr$est 
  
# Function specification 
fitted <- function(x,b) apply(x*b,1,sum) 
 
gwr.fitted <- fitted(x,b) 
     
#N.B. You need to export "gwr.pred" to the global envt so that the  
#"ROC" can find the vector... 
gwr.pred <- 1 / (1 + exp(-1*gwr.fitted)) 
 
 
# 
# Test the accuracy 
# 
 
auc <- ROC(test=gwr.pred, stat=y)$AUC 
 
> auc 
[1] 0.8561962 
 
 
# the following is a goodness-of-fit test based on function "hltest()"  
hllist <- hltest(resp=df$presence,prob=gwr.pred,g=5) 



 

> hllist 
$table 
   group 
      1   2   3   4   5 
  0 548 477 272 180 104 
  1  10  84 289 381 454 
 
$Chat 
[1] 67.97499 
 
$df 
[1] 3 
 
$sig 
[1] 1.154632e-14 
 

 
 
APPENDIX A 
 
 Here’s the code for the function to determine the Hosmer & Lemeshow goodness-

of-fit (just copy and paste it into the R command window, and call it using 

“hltest()” and three arguments): 
hltest <- function(resp, prob, g) { 
 
  # Function for computing C-hat = approx. distributed as a chi-square 
  # with g-2 degrees of freedom (Hosmer & Lemeshow p.148) 
  # This is an omnibus goodness-of-fit measure for binary (as compared 
  # to grouped, binomial data) models. 
 
  # Arguments: 
  # resp = "response" = a vector of dummy variables (coded 1/0)  
  #        indicating the presence of the effect 
  # prob = a vector of expected probabilities for each observation, based 
  #        on the model 
  # g    = scalar indicating the number of groups to use (e.g. 4, 10)  
 
 
  # extract the binary values and expected probabilities for the 
  # data set 
 
  hl.mat <- cbind(resp,prob) 
 
 
  # sort the matrix from lowest to highest expected probabilities 
 
  hl.mat <- hl.mat[order(hl.mat[,2]),] 
  key <- seq(1:length(prob)) 
  hl.mat <- cbind(hl.mat, key) 
 
 
  # cut the predicted probabilities into “g” equal-sized groups 
  group <- factor(cut(hl.mat[,3],g)) 
 
  # label the cutoff categories as "1" through "g" 
  levels(group) <- c(1:g) 
 
  # 



  # Now attach the groupings to the "hl.mat" matrix 
  # 
 
  hl.mat <- cbind(hl.mat, group) 
 
 
  # 
  # Hosmer & Lemeshow's Goodness-of-fit (p.148) 
  # 
  # n = number of observations in the quantile 
  # pi-bar = average of the expected probabilities for that quantile 
  # o = number of observed positive (=1) outcomes 
  # y = number of "positive" responses 
  # 
 
  # Count up the number of “resp” == 1, by group 
  y <- table(hl.mat[,1], hl.mat[,4])[2,] 
 
  # Note usage of “tapply”: tapply(data,categories,function) 
  n <- tapply(hl.mat[,1],hl.mat[,4],length) 
 
  # “pi.bar” = average probability of a “resp”=1, by group 
  pi.bar <- tapply(hl.mat[,2], hl.mat[,4],mean) 
 
  c <- (y-n*pi.bar)^2/((n*pi.bar)*(1-pi.bar)) 
 
 
  # Return the results as a list... 
  hl.list <- NULL 
  hl.list <- list(table=table(hl.mat[,1], group), Chat = sum(c), df=g-2,  
    sig = (1-pchisq(sum(c),g-2))) 
   
 
} 

 

 Oftentimes we might want to take a random subset of our data points, for 

example, to perform model testing.  Here’s some simple code -- applied to the 

“df” dataframe from the AMCR – that will enable you to randomly sample 100 

records. 

 

# Step 1. Create a vector of rowid numbers the same size as your 
# data set to be sampled. 
> size <- dim(df)[1] 
> rowid <- seq(1,size,by=1) 
 
# Step 2. Sample the rowid numbers without replacement; store the  
# result in “row.sample” 
> row.sample <- sample(rowid,size=100,replace=FALSE) 
 
# Step 3. Grab the subset of your original dataframe and call it 
# “df.sample” 
> df.sample <- df[row.sample,] 
 
# Step 4. Double check to confirm it worked… 
> dim(df.sample) 
[1] 100  15 
 
 
 



 Looping in R and an “if else” control structure: 
 

for (i in 1:100) { 
 
  cat(paste(“Entering “, i, “th loop”, sep=””),“\n”) 
 
  if (i > 95 & i < 100) { 
   
    cat(“*** (Almost done)”,”\n”) 
 
  }else if (i > 99) { 
 
    cat(“!! Done !!”,”\n”) 
 
  } 
 
} 
 
 

# 
# Name:  "allcombo.R" 
# Date:  Aug.10, 2006 
# Author: David Lieske 
# Purpose: This script calls the leaps library to build an 
#  "all combinations" matrix of fields for GLM model 
#  building. 
# Arguments: Assumes a pre-existing dataframe called "df" exists 
#               in the global environment. 
# Value: A matrix called "allcombo.out", sorted by AIC values, 
#  with three fields: (1) aic; (2) auc; (3) predictor 
#  variable combination 
#  
 
library(leaps) 
library(Epi) 
 
 
# 
# 
# First: define the x variables dataframe 
# 
# 
 
TEMPELEV <- df$TEMP*df$ELEV 
df <- cbind(df,TEMPELEV) 
 
 
# You need to modify this! 
x.list <- c("CONIFER","CROPVEG","DECID","MIXEDF","EVIMEAN","EVISD", 
  "DTR","PRECIP","TEMP","ELEV","TEMPELEV") 
 
# “x” is a specific set of predictor variables  
x <- df[,x.list] 
 
# “x.combo” is the combination of models, assuming y = predictor variable  
#(which you need to specify) 
 x.combo <- leaps(x=x,y=binary)$which 
 
 
 



# 
# 
# Second: use the matrix of selected variables to select a subset of  
# x variables for each iteration 
# 
# 
 
 
# The following creates a dummy data frame to hold the AIC results, 
# along with their formulae 
 
aic <- rep(0,dim(x.combo)[1]) 
auc <- rep(0,dim(x.combo)[1]) 
predictors <- rep("null",dim(x.combo)[1]) 
allcombo.out <- as.data.frame(cbind(aic,auc,predictors)) 
allcombo.out$aic <- as.numeric(allcombo.out$aic) 
allcombo.out$auc <- as.numeric(allcombo.out$auc) 
allcombo.out$predictors <- as.character(allcombo.out$predictors) 
 
for (i in 1:dim(x.combo)[1]) { 
 
  x.names <- x.list[x.combo[i,]] 
  x <- as.data.frame(df[,x.names]) 
  names(x) <- x.names 
 
  df.iter <- as.data.frame(cbind(x,binary)) 
 
  y.formula <- "binary~" 
  x.formula <- paste(x.list[x.combo[i,]],collapse="+") 
  iter.formula <- as.formula(paste(y.formula,x.formula,sep="")) 
   
  iter.glm <- glm(iter.formula, data=df.iter, family=binomial)     
  iter.prob <- predict.glm(iter.glm, type="response") 
 
  cat(iter.glm$aic,"\n") 
  allcombo.out[i,"aic"] <- iter.glm$aic 
  allcombo.out[i,"auc"] <- ROC(test=iter.prob,stat=df$binary)$AUC 
  allcombo.out[i,"predictors"] <- x.formula 
 
 
} 
 
 
# Final step: sort the results from lowest AIC to highest... 
 
allcombo.out <- allcombo.out[sort.list(allcombo.out$aic),] 
 

 
Appendix B 
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